Bitableaux Bases for some Garsia-Haiman Modules and Other Related Modules

نویسنده

  • Edward E. Allen
چکیده

For certain subsets S and T of A = { · · · , (0, 2), (0, 1), (0, 0), (1, 0), (2, 0), · · · } and factor spaces C S [X, Y ], C +S,T [X, Y, Z,W ] and C − S,T [X, Y, Z,W ], bitableaux bases are constructed that are indexed by pairs of standard tableaux and sequences in the collections ΥψS and ΥψT . These bases give combinatorial interpretations to the appropriate Hilbert series of these spaces as well as the graded character of C S[X, Y ]. The factor space C S [X, Y ] is an analogue of the coinvariant ring of a polynomial ring in two sets of variables. C +S,T [X, Y, Z,W ] and C − S,T [X, Y, Z,W ] are analogues of coinvariant spaces in symmetric and skew-symmetric polynomial settings, respectively. The elements of the bitableaux bases are appropriately defined images in the polynomial spaces of bipermanents. The combinatorial interpretations of the respective Hilbert series and graded characters are given by statistics based on cocharge tableaux. Additionally, it is shown that the Hilbert series and graded characters factor nicely. One of these factors gives the Hilbert series of a collection of Schur functions sλ/μ where μ varies in an appropriately defined λ. * Thanks to all of the wonderful editors of this journal! the electronic journal of combinatorics 9 (2002), #R36 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Combinatorics of the Garsia-Haiman Modules for Hook Shapes

Several bases of the Garsia-Haiman modules for hook shapes are given, as well as combinatorial decomposition rules for these modules. These bases and rules extend the classical ones for the coinvariant algebra of type A. We also give a decomposition of the Garsia-Haiman modules into descent representations.

متن کامل

Descent Monomials, P-Partitions and Dense Garsia-Haiman Modules

A two-variable analogue of the descents monomials is defined and is shown to form a basis for the dense Garsia-Haiman modules. A two-variable generalization of a decomposition of a P-partition is shown to give the algorithm for the expansion into this descent basis. Some examples of dense Garsia-Haiman modules include the coinvariant rings associated with certain complex reflection groups.

متن کامل

Garsia-Haiman modules for hook partitions and Green polynomials with two variables

The Garsia-Haiman modules are doubly graded modules for the symmetric groups, introduced by A. Garsia and M. Haiman [GH] to prove Macdonald’s positivity conjecture [M1]. These modules are defined for partitions of positive integers n, denoted by Dμ. The dimension of Dμ is given by n! whenever μ is a partition of n [H2]. As this fact implies, the Garsia-Haiman modules Dμ are isomorphic to the co...

متن کامل

The Combinatorics of the Garsia - Haiman Modules for Hook Shapes ( Extended Abstract )

Several bases of the Garsia-Haiman modules for hook shapes are given, as well as combinatorial decomposition rules for these modules. These bases and rules extend the classical ones for the coinvariant algebra of type A. We also exhibit algebraic decompositions of the Garsia-Haiman modules for hook shapes that correspond to the combinatorial interpretation of the modified Macdonald polynomial t...

متن کامل

A Kicking Basis for the Two Column Garsia-haiman Modules

In the early 1990s, Garsia and Haiman conjectured that the dimension of the Garsia-Haiman module Rμ is n!, and they showed that the resolution of this conjecture implies the Macdonald Positivity Conjecture. Haiman proved these conjectures in 2001 using algebraic geometry, but the question remains to find an explicit basis for Rμ which would give a simple proof of the dimension. Using the theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2002